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Abstract 
Research described in present study approaches EEG 
biosignals physiology and power spectral 
distribution, respectively EDA phenomenology, 
highlighting electrodermal potential technique in 
alternating current. The experiment structure is 
based on a design adequate to specific purpose of 
the topic, i.e. recourse to two distinct techniques 
pertaining to quoted biosignals, in view of obtaining 
the same type electrical behavior, expressed as 
personality typology. We determined the projective 
functions using, for EEG, power spectral density as 
measured by the NeuroSky MindSet headset;  
whereas for EDA, we considered the skin alternating 
current potential levels, basal type (SPL) and 
response type (SPR),  acquired through MindMiTM 
assessment system, patented by author of present 
research, in  2013. 
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1.General 
Research applied in neural engineering, cognitive 
engineering and cognitive sciences is of paramount 
importance worldwide. Today’s brain research 
implies advanced techniques and technologies, 
among  which, notably, magnetic resonance imaging, 
which supplies valuable information on the brain 
regions as activated by stimuli. Such images, 
reproduced by evocation, ascertain and certify the 
concept pattern recognition, which comes 
particularly useful in charting procedures. 
Electroencephalography techniques (EEG) are also 
used for brain charting, at a lower resolution though. 
All of such aspects of experimental research become 
coherent and meaningful under the auspices of the 
new concept neural engineering, implementable in 
neurotechnology. Neural engineering is revealed 
through all of the interdisciplinary criteria generically 
attributed to techno psychology, based  on research 
of the relationship amongst neurons, neural 
networks and the nerve system functions; also, as 
based on quantifiable models, aiming to develop and 
implement measuring and control techniques, of 
sleepy devices. 
Neural engineering is directed towards human-
machine interaction, (HCI – Human Computer 
Interaction); by further specialization, such 
engineering may go beyond usage in psychology, 
thus opening prospects for robotics, or for the virtual 
and informatics technologies, naturally sharing the 

method with cognitive engineering, yet distinctly 
apart, in terms of implementation of specific hard.  
Brain-computer interfacing would be one type of 
direct communication between brain and external 
device, already proven useful as improving, 
recouping and substituting cognitive or human 
sensory-motor functions.  
Electrodermal activity (EDA), is a widely used 
phenomenology in measuring systems of, 
psychophysical aspects, applied in the case of the 
well known polygraph (lie detector), and basic for a 
number of measuring devices used these 30 years to 
identify series of major psychophysical data. 
However, such research does not cover all of the 
complex aspects required for drawing – by inference 
from physiological data – a good enough mix of 
cognitive aspects, to safely involve in command and 
remote control of movement in technical systems. 
Research covered by present study cannot be 
covered within one single discipline. Thus, our topic 
needs to develop based on a robustly reasoned 
multidisciplinary approach, since so many 
applications require electronics and electro-
mechanical engineering, e.g. the physics of signals to 
start with, and the mathematics of processing 
thereof, up to the psychophysical phenomenology 
expressed as an advanced mix of patterns.  
Such approach implies studying interface 
phenomena, enabling engineering to implement 
input neurosignals acquired by specific procedures, 
corresponding to specific psychophysical aspects. 
By present research, a global vision is depleted, of 
ways to identify psychophysical factors able to grow 
into patterns of bio-signals taken over by means of 
measuring technologies, through a direct, 
noninvasive, rapid and quite accurate method. For 
such purpose, on the one hand a measuring system 
approved for EEG bio-signals was used; whereas on 
the other, a skin phase neural stimulation procedure 
in an original concept was used, as well as 
equipment and a method able to identify a 
psychological profile quite fast, as patented by 
present research author, [Grigore, 2013].  
Present study mainly targets a determination of the   
correlation among biosignals patterns, distinct in 
terms of physiology and acquired through specific 
equipments. Present research extends an original 
technical solution, to add up to the current field 
research.  
The research-proper implies running multiple, 
exemplifying measurements, of specific patterns of 
various physiologies’ biosignals, by making use an  
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adequate type design, processing experimental data 
and elaborating the statistical study on the 
correlation of the two biosignals categories, carrying 
out in own patterns same common action structures, 
by means  of  which it is possible to set up a 
redundant experience basis. 
Veracity validation, of results yielded by the original 
approach of EDA phenomenology in present 
research, was through assessment by direct 
measurement of a number of subjects; such subjects 
were measured simultaneously, at forehead level, 
for EDA type signals, respectively EEG type signals. 
Such signals were later converted into a set of values 

expressing, for EDA, electrodermal potential levels 
(SPL), respectively by electrodermal response 
potentials (SPR); whereas for EEG, power spectral 
density, for the corresponding brain frequency 
bandwidths. 
 
Thus, present experimental study is run through two 
distinct techniques based on bio-signals, in order to 
obtain, by inference, in variables corresponding to 
each distinct technique, the same type behavior, 
expressed as electrical signals.  

 

 
 
 
 
 
2. EEG biosignals  
2.1 The physiology of EEG biosignals  
Basic components of CNS are the nerve cells 
(neurons) and glial cells, in-between the neurons, 
each nerve cell consisting of an axon, dendrites and 
cell body, as indicated in Fig.1, a. Nerve cells 
transmit information through the body as electrical 
impulses. The axon acts as a pathway conductive of 
the electrical impulse, whereas the dendrites 
connected either with other axons, or with other 
dendrites, distribute the impulse towards other 
nerve cells [Sanei & Chambers, 2008].   
In the nerve cell various electrical impulses may 
occur. When an action potential (AP) stimulates 
excitatory synapses, an excitatory postsynaptic 
potential (EPSP) is produced. An inhibitory 
postsynaptic potential (IPSP), which illustrates 
hyperpolarization, is produced when an inhibitory 
synapse is stimulated by an AP [Sanei & Chambers, 
2008; Fox, 2009; Lopes, 2010].  EPSP or IPSP are 
generated in ulterior nerve cells, by the active 
postsynaptic current, as indicated in Fig.1, b. After an 
EPSP or IPSP occurs, a potential is produced along 
the cell nerve, due to the difference of the 
percentage of cations (positive load ions) and anions 
(negative load ions) between the nerve cell exterior 
and interior. Primary transmembrane currents 
generated extracellular currents which are 
responsible for the generation of field potentials 
[Sanei & Chambers, 2008; Lopes, 2010].   
The nerve cells transfer information as AP. An AP is 
generated by the ions exchange which diffuse 
through the neuron membranes, thus creating a 
temporary change of the membranes potential. The 
ions exchange is caused by a PPSE, which must go 
beyond a threshold potential for an AP to be 
initiated. In order for a threshold to be surpassed, a 
higher number of presynaptic neurons must similarly 
produce a PPSE [Zinke-Allmang, 2009], as indicated 
in Fig.2, a. 
 

 
 
 
 
 
During the ions exchange, the membranes potential 
depolarizes fast, rising in positive polarity and 
creating a peak. The membranes potential re-
polarizes in order to rebalance, back to the original 
membranes potential, known as rest membranes 
potential [Sanei & Chambers, 2008; Fox, 2009; Zinke-
Allmang, 2009].  
Fig.2, b indicates an AP peak produced when a 
neuron is stimulated. The predominant ions implied 
in the AP peak are Na+ and K+. When a neuron is 
stimulated, a rapid repolarizing occurs, whereat the 
Na+ channels with voltaic gate open and permit Na+ 
to diffuse into the nerve cell membranes, increasing 
potential thereof.  If such potential touches at the -
55 mV threshold, then  a higher number of Na+  
voltaic gate channels open and permit an increased 
quantity of Na+ to diffuse, causing membranes 
potential to increase to +30 mV [Sanei & Chambers, 
2008].  Before touching at the peak, the Na+ with 
voltaic gate channels become inactive, and Na+ 
stops diffusing. The K+ with voltaic gate channels 
open and K+ start diffusing outside of the cell 
membranes, thus lowering the membranes 
potential. Such process is known as repolarizing.  
Channels with Na+ voltaic gate become active again 
and Na+ start diffusing anew, up to balance (rest 
membrane potential) point [Sanei & Chambers, 
2008]. 
During the balancing process, re-polarization goes 
beyond the rest potential (see Fig. 2, b). Such 
phenomenon is known as hyperpolarization. 
Hyperpolarization is a safety action which prevents 
the neuron from receiving other stimuli, potentially 
causing further AP in the opposite direction [Sanei & 
Chambers, 2008]. Post hyperpolarization, 
membranes potential returns to (-70 mV) rest level. 
The whole process, recouping time included, before 
another AP is generated, takes 8ms [Zinke-Allmang, 
2009]. 
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a) 

 
b) 

Fig. 1. NCS cells: (a) anatomy and (b) electrical 
impulse generation [Sanei & Chambers, 2008]. 

 
The brain neurons produce AP, which contributes to 
the neural generation activity recorded by EEG. 
There are 1010 up to 1011 neurons in the brain and 
the sum up of activity thereof is responsible for the 
production of neural activity [Nunez & Srinivasan, 
2009].  While tens of thousands pyramidal neurons 
are being excited, a current flow is generated, which, 
in turn, generates electrical dipoles between neuron 
body and dendrites. 
 

 
a) 

 
b) 
 

Fig. 2. Action potentials: (a) threshold limit and (b) 
ion exchange during generation [Sanei & Chambers, 

2008; Fox, 2009] 
 

EEG is a technique used for measuring electrical 
dipole between 2 distinct locations in the brain, such 
dipole being generated by the brain cortex [Teplan, 
2002] (see Fig. 3). An EEG signal, measured at scalp 
level, is generated by the inhibitory postsynaptic 
potentials (IPSP) and by the excitatory postsynaptic 
potentials (EPSP) [Kandel, Schwartz & Jessell, 1991]. 
 

 
 

Fig. 3. Electrical dipole measured by the EEG 
electrode [Burger, 2014] 

 
EEG signal types will be differentiated based on 
identification and measurement of parameters 
specific to each signal type. However, the signals 
recorded by EEG electrodes express not only neural 
activity of the source located under the electrode, 
but a sum up of the neural activity run in various 
brain locations. 
EEG is a non-invasive procedure (no need for any 
device going inside the body) which uses electrodes 
for measuring the neural activity. A medium size 
electrode would normally consist in an Ag-AgCl disk, 
1 to 3 mm diameter [Teplan, 2002] and is located 
directly on the scalp. There are various electrodes 
types, such as further detailed: 
• disposable (no gel, and pre-gelled); 
• reusable electrodes disks (gold, silver, stainless 
steel, or steel plate); 
• a series of cap and easycap electrodes; 
• NaCl electrodes. 
Montage will be as per features of EEG data 
rendering, i.e. or display or on paper. Rendering 
features would include rendered ordering and 
channels, as well as recording technical styles 
(electrode specific) [Libenson, 2013]. Two distinct 
recording techniques are mainly used, i.e. bipolar , 
and referential montage, which somewhat overlap. 
Bipolar montage is a technique which identifies the 
voltage difference between adjacent electrodes; yet, 
due to the low proximity of the adjacent electrodes 
to each other, information is lost [Libenson, 2013].  
The referential montage compares all of the 
electrodes with one single reference electrode. The 
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reference electrode location may be selected so the 
voltage should be neutral. In practice, the reference 
electrode will be attached to the least noise-prone 
region [Libenson, 2013].  
International Federation of Societies for EEG and 
Clinical Neurophysiology set up a standard for 
electrodes location, known as 10-20 system 
[Forslund, 2012]. Fig. 4 indicates montage in 10-20 
system of 21 electrodes, where channel Fz is located 
on forehead, whereas channel Pz at the back of the 
head. For instance, if is the movement of the right, 
respectively of the left, finger, is monitored, 
electrodes C3 and respectively C4 will be used. The 
electrodes for the ear lobe (A1 and A2, not 
indicated) are often used as reference electrodes. 
For a thoroughly detailed EEG recording, an 
international 10-5 system was set up, where a 
number of electrodes are located on the subject’s 
scalp [Forslund, 2012]. Fig. 4, b illustrates an 
instance of Geodesic sensors network with 128 
channels, where channel 17 is located on forehead, 
and channel 82 at the back of the head, whereas Cz 
acts as a reference electrode. Channels 37, 105 and 
16 of the Geodesic network are equivalents of 
channels C3, C4 and Fz. 
During the EEG signals recording, it was noted that 
such signals manifest specific features which vary 
with the subject’s age, as also  with the subject being 
asleep or awake [Sanei & Chambers, 2008]. Based on 
such features, the brain waves may fall into six 
categories. Such 6 categories are known as alpha (α), 
theta (θ), beta (β), delta (δ), gama (γ), and miu (µ), 
each expressing a bandwidth of frequencies [Sanei & 
Chambers, 2008; Baztarrica, 2012]. Table 2.1 
indicates each category’s frequency margin, as well 
as a number of mental functions, which are 
ascertained roles of the frequency margin. 
 

    a)                                             b) 
 

Fig. 4. Electrodes location as per international 
standards: (a) 10-20; (b) 10-10 [PEERJ, 2016] 

 
There is a number of distinct techniques which 
measure brain activity. Imaging based on functional 
magnetic resonance (fMRI), single-photon emission 
computed tomography (SPECT) which measures 
secondary functions, as well as metabolism and 
exchanges of oxygen, blood volume and flow; and 
positrons emission tomography (PET). [Sanei & 
Chambers, 2008; Menon & Crottaz-Herbette, 2005]. 

By such techniques the whole amount of brain 
activity can be measured; however, due to 
hemodynamic delay (during which required oxygen 
level in blood rises) temporal resolution thereof is 
low: 1 to 6 s [Menon & Crottaz-Herbette, 2005; 
Ashrafulla, 2012]. EEG technique for measuring brain 
electrical activity, and magnetoencephalography 
(MEG), for measuring the magnetic field produced 
by the brain electrical activity, can be useful only in 
measuring surface activity, which occurs close to 
scalp. However, EEG and MEG supply a high 
temporal resolution, up to 1 ms [Ashrafulla, 2012], 
an aspect which makes such techniques usual in 
analysis of brain activity measurement. Magnetic 
fields are less distorted by the scalp than the 
electrical fields, thus MEG manifesting a spatial 
resolution higher than EEG. MEG can detect, 
however, only the tangential components of the 
current sources in the brain, whereas EEG detects 
both the tangential and the radial component 
[Ashrafulla, 2012]. 
EEG techniques are used mainly in research, as non-
invasive measuring devices for recording the 
patients’ brain activity, such device being used for 
monitoring comatose patients’ brain activity, in 
order to identify the lesion regions, and in order to 
predict epileptic seizures [Teplan, 2002].  The most 
useful usage however, was proven to be the 
interaction with technology in brain-computer 
interfaces (BCI). Orders extracted and interpolate in 
EEG are used to control either a cursor on a display, 
or an avatar in the virtual space, and such like 
[McFarland, McCane, David & Wolpaw, 1997]. 
During EEG recording, noise occurs, which 
contaminates brain electrical activity (EEG); such 
noise is known as artefact [Libenson, 2012]. 
Artefacts are electrical activities produced outside of 
the brain, contaminating and/or obstructing relevant 
brain activity recorded by EEG (see Fig. 5). Such 
signals can occur in  any point of an EEG recording, 
whereas amplitudes thereof are normally higher 
than the amplitudes of cortical signals of interest 
[Libenson, 2012]. The various types of artefacts may 
be ranked as physiological, respectively and non-
physiological. 

 
Fig. 5. Recorded neural activity sum up [Burger, 

2014] 
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2.2  Dynamics of stimulated brain activity 
Experts manifest a worldwide intense preoccupation 
to highlight dynamic aspects of brain behavior. The 
highest challenge of these 40 years is undoubtedly 
the paradigm of the BCI systems, which permit the 
control of an artificial device; such control is based 
on features extracted from electrical, magnetic, or 
other type physical voluntary manifestations, of 
cortical activity, collected epi- or subdural from 
cortex or scalp, or in an invasive electrophysiological 
manner, to be more specific brain waves biosignals 
intracortically recorded using a unique electrode, or 
else multi- electrode network [Dornhege, Millán, 
Hinterberger, McFarland, Müller & Sejnowski, 2007].  
Recent studies proved the correlations existing 
between the EEG bio-signals and  actual or imagined 
moves, as well as between EEG signals and mental 
loads [Keirn & Aunon, 1990]. Electrical neuronal 
activity covers a wide frequency bandwidth; thus, 
monitored brain waves bio-signals are filtered noise-
free and in order for the relevant information to be 
extracted. Finally, such information is decoded and 
transformed into orders for the device, by 
synchronous control, or, more efficiently, by self-
adjusted or asynchronous control, in order to detect 
if the subject’s move was intended or not. For a 
number of specific BCI loads, gross brain bio-signal 
acts as a stimulus, as well as feedback for interface 
control. 
As neural activity signatures, EEG bio-signals can be 
captured by multiple electrodes EEG devices, inside 
of the brain, on the cortex brain, or at specific 
locations on scalp, recordable under various forms. 
Biosignals are  normally presented in the time 
domain, yet a number of new EEG devices, as further 
indicated in the case of the NeuroSky headset, are 
able to apply simple processing methods, as would 
be Fourier representation for frequencies  analyses, 
a number of which being even equipped with 
imaging devices for visualizing EEG topographies 
(spatial maps of brain activity). 
Up to present day, several algorithms for EEG bio-
signal processing have been developed, including – 
unlimitedly – time domain analysis methods, 
frequency domain analysis, spatial domain analysis , 
and multimodal processing; hence a number of 
algorithms have been developed for brain waves 
activity visualization in images which can only be 
reconstructed by EEG.  
In the EEG technique involving a high cortical activity 
dynamics, two types of systems are normally used: 
endogenous load based systems, respectively  
exogenous loads based systems [Dornhege, Millán, 
Hinterberger, McFarland, Müller & Sejnowski, 2007]. 
Endogenous load systems, based on spontaneous 
activity, use brain waves signals which do not 
depend on external stimuli, and which can be 
influenced by focusing on specific mental loads. In 
order to obtain an efficient load recognition system, 

a number of focusing attempts on the part of the 
subject are normally run. Limiting the focusing is a 
fatiguing mental load, especially for the disabled 
subjects who may have a hard time getting voluntary 
control on their brain waves activity; such limiting 
must be low in order to obtain an efficient load 
recognition system. Exogenous  load systems, based 
on evoked activity, use brain waves signals which 
depend on external stimuli. Particularly interesting 
are the systems based on either P300 (evoked 
potential) or on SSVEP (steady state visual evoked 
potentials). Advantages of such potentials consist in 
being relatively well understood 
neurophysiologically, and robustly evocable by 
various subjects. Moreover, such systems do not 
require training by feedback, as such potentials show 
per se,  regardless of the subjects focusing on one 
single stimulus, or on a number of stimuli presented 
in randomized order [Hoffmann, Vesin, Ebrahimi & 
Diserens, 2008].  
Over the data acquision phase, an individual’s neural 
activity is obtained by invasive or non-invasive 
methods using electrodes. Neural activity recorded is 
sampled at a selected sampling rate, which is then 
amplified, by special equipments. Data yielded in 
bio-signal acquision are contaminated by artefacts, 
the reason why such data must be processed, in 
order to highlight the signal/noise ratio. Such 
processing  grants high standard EEG quality, as 
required for ranking mental loads.  
After the signal/noise ratio is improved, the features 
as well as the spatial filtering, the measurement of 
voltage amplitude and the spectral analysis, are 
extracted in data which codify the message and the 
subjects’ command. Such features can be in time 
domain (e.g. echo potential amplitudes) and/or in 
the frequency domain (e.g.  or  rhythms 
amplitudes) [Forslund, 2003; Wolpaw, Birbaumer, 
McFarland, Pfurtscheller & Vaughan, 2002]. 
Both sensorimotor activity and rhythms of the brain 
waves change (, β and γ), and the potentials related 
to movement (MRP),  the slow cortical potentials 
(SCP), evoked potential (P300), visual evoked 
potential (VEP) and response to mental loads, 
express the more dynamic part of the brain waves 
activity, very accurately captured in the EEG analysis.   
 
2.3 Local EEG model (LEM) 
Branch literature illustrates a series of models 
elaborated for normal and abnormal EEG generation 
[Sanei & Chambers, 2008]. As a rule, such models are 
nonlinear. The simplest model consists in a set of 
simulated neurons, thalamocortical cells type relay 
and interneurons, embedding physiological and 
histological limited data, as available at EEG time 
[Lopes, Hoeks, Smits & Zetterberg, 1974]. Fig. 6  
illustrates model LEM, variant Wilson and Cowan 
[Wilson & Cowan, 1972], which advances a set of 
equations able to describe overall activity (not 



 
 

6

specifically EGG) in a complex of excitatory and 
inhibitory neurons with a high number of 
interconnections [Zetterberg, 1973].  
Even though the model is per se analogous, all of the 
blocks are implemented in a discrete form. Such 
model may consider the major features of one 
distributed model; it is easy to investigate the 
resulting  change of bandwidth by the influence of 
the excitatory and inhibitory thalamocortical relay 
cells and of the interneurons. In the terms of LEM, 
the EEG rhythms are supposedly generated by 
distinct nerve populations, which manifest frequency 
selective features. Such populations are made of 
interconnected single neurons and are supposedly 
driven by an aleatory input. The model features, 
such as neural interconnectivity, response pulse of 
synapse, and excitation threshold, are expressed in 
terms of LEM parameters. Changes at such 
parameters’ level produce relevant EEG rhythms. 
 

 
 

Fig. 6. Local EEG (LEM) model [Wilson & Cowan, 
1972; Sanei & Chambers, 2008] 

 
Relay type thalamocortical neurons are expressed by 
two linear systems manifesting responses to the 
excitatory impulse he(t), at upper branch and 
inhibitory postsynaptic potential, expressed as hi(t). 
Such system’s non-linearity is described as fe(v), 
expressing a target generator process. Function fe(v) 
can be modified in order to generate EEG signals for 
various brain abnormalities. Inter-neuronal activity is 
also expressed by one more linear filter he(t) in the 
lower branch, which may differ from the first linear 
system; and by nonlinear function be(v). Ce and Ci 
express a number of inter nerve cells, respectively, 
thalamocortical neurons. An inhibitory neuron’s 
average number of inputs from the excitatory 
neurons is determined by Ce, and respective number 
of inhibitory neurons, for each excitatory neuron, is 
Ci. Input p(t) is supposed to result from the sum up 
of one series of aleatorilly distributed potentials 
which drive the circuit excitatory cells, generating a 
real-time background EEG signal. Such signals from 
deeper brain sources, at trunk and thalamus level, 
are part of the action, or spontaneous activation of 
the center nervous system (SNC), [Sanei & 
Chambers, 2008]. 
 

The mathematical  relation advanced by Wilson and 
Cowan for modeling each postsynaptic potential he 
and hi is   
  

   tata
e eeAth 21                          (1) 

   tbtb
i eeBth 21                          (2)                               

 
where A, B, ak, and bk are constants which control 
pulse waves shape. Membranes potentials are 
correlated to the impulses density along axons by 
threshold  (static) functions fe  and fi. Such functions 
are, normally, non-linear; yet, for smooth operation,  
such are taken to be linear for each short time 
interval. The model here described manifests a 
single EEG channel, presenting no modeling of the 
inter-channel relations. For a complex and 
undoubtedly much more accurate approach, a 
model must be defined which allows for simulation 
of a system by generating an EEG multicanal;  such 
aspect is still being studied. 
 
2.4. EEG Parameters  
In (semi)automatic processing procedures of EEG 
signals, the fact is considered that, in information 
terms, EEG parameters are temporal, statistical by 
amplitude and frequency related. The temporal 
parameters follow  the intersections with the axis 
and the amplitude extremes (the variance maximum-
maximorum  vs.  minimum-minimorum) per time 
unit, respectively the first and the second order 
temporal means: the average value, the mean 
square value, the dispersion, the mean square 
deviance, the cross correlation  and the 
autocorrelation functions and coefficients, and the 
crosscovariance and autocovariance functions. If 
histogram  distribution  is Gaussian,  standard 
average and variance will be manifested. For non-
Gaussian distributions,  useful  data  are  provided  
by skewness and kurtosis. Skewness  measures the 
shifting angle from  normal distribution  symmetry,  
as against  basic line. Values  other than zero  of  
such  parameter indicate presence  of  monophasic  
episodes  in  EEG.  
Statistical parameters of amplitude are determined 
on histogram, based on density probability (second 
order histogram). The probability density diagram 
computes the average value, the median (mean 
value of the x variable domain) and the mode  
(highest density point).  
 
2.4.1 Power spectral density   
Frequency parameters imply a frequency analysis 
based on the amplitude  specters supplied by the 
Fourier transform and on the power specters. 
Frequency parameters highlight EEG specific 
rhythms, whose frequency distribution is associated 
with psychophysical states of the subject.  Thus, data 
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regarding the fatigue level are supplied by the EEG 
power signal, yielded by the zone below the spectral 
power density function, whereas the specific 
pathological manifestations are associated with 
frequency bandwidth shifting. [Hariton, 2009]. 
Power spectral density is power distribution in 
bandwidth B of signal x(t). Here are the relations for 
the power signal with center frequency f0 in 
bandwidth B, respectively for power spectral 
density: 

 
     (3) 

 
 

  (4) 
 
 
(3) and (4) express that, over a narrow bandwidth f, 
around f0, if f →0 => P(f0, B) → S(f0). The 
narrower f  is, the closer average power over such  
bandwidth gets to spectral density. 
EEG spectral analysis is normally run with a system 
consisting in a filter which allows for crossing  the 
bandwidth with fo as a pivoting point, a square 
detector and an integrator. Such analyzers can be 
type parallel, series (scanner), dispersive filter, time 
compression and Fourier. 
Fourier  analyzer (see Fig. 7) is made of a correlator 
and a Fourier transform. The Fourier transform 
contains two multipliers, the weighing functions 
memories, the sin and cos memories, a numerical 
integrator and a processing block.  
 

 
 

Fig. 7. Fourier analyzer [Hariton, 2009]. 
 
Computing relation will be inferred by Wiener-Hincin 
theorem: 
 

                  (5) 
 

where Cxx is the autocorrelation function of an EEG 
signal.  
The autocorrelation function is extracted from the 
memory and multiplied by the weighing functions, in 
order to smooth the specter for the wider bandwidth 
signals. Sin  and  cos  memories implement the 
exponential function. At processing block output 
point, the real and the imaginary components, the 
module and the phase of the Fourier transform will 
be supplied. Analysis of an EEG signal spectral 
power supplies quantitative information about EEG 
distribution in frequency, which is easily done by 
means of the Fast Fourier Transform (FFT) algorithm. 

Based on the EEG/FFT correlation function, the 
power specter will be deduced after the relation: 
 

 (6) 
 
where X(f ) is EEG signal Fourier transform along a 
channel. 
Coherence quantifies the connection among various 
EEG channels, value thereof being yielded by 
relation: 
                                                                                       

    (7) 
 
 
The cross specter is yielded by the multiplication X(f) 
Y*(f) where X(f) and Y(f) the EEG signals’ Fourier 
transforms along two channels, whereas (*) is the 
complex conjugate. 
EEG signal phase is yielded by the polar 
representation angle thereof, coherence being a 
complex number. The phase may indicate  brain 
waves activity  interactions recorded in various 
cerebral surface areas. 
Linear spectral analysis of EEG signals implies  
multichannel EEG signals acquision, computation of 
power spectral density (by FFT), of the cross specter, 
of coherence and of phase relations. 
 
Example 1: 
Fig. 8 illustrates a diagram of average power spectral 
densities, corresponding to measurements, by an 
EEG device, run on 20 subjects, no exogenous 
stimulation. 

 
Fig. 8.  Diagram of the average power spectral 

densities over the EEG bandwidth  
 
As mediating the values of power spectral densities, 
stabilization of patterns may be noted, similar in 
terms of shape, however highly specific for each 
subject assessed. Mediating the power spectral 
densities values in each EEG bandwidth is needed in 
order to run comparative studies, with values 
yielded by other type measuring devices. 
 
2.4.2 Inferential function EEG 

The association of mental states with specific levels 
of power spectral density, or with specific structures 
of such parameters, by means of an integrative 
approach, may lead to identification of 
psychophysical patterns. In such case, relations 
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amongst the physiological factors that must be 
followed as temporal and spatial reactions profiles 
are: one-to-one relation; null relation; one-to-
multiple relation; multiple-to-one and multiple-to-
multiple. Relations multiple-to-one and multiple-to-
multiple can be simplified by redefining the factor 
signifying an element in the psychological or 
physiological domain. The invariant expresses an 
overall isomorphic (one-to-one) association.  Such 
methods’ development and application by intrinsic 
physiological recording can contribute to the 
progress of research of social and psychological 
phenomena, by measuring the solved previously 
contested predictions, the highlighted phenomenons 
previously unnoticed becoming noticeable, while 
conclusions previously accepted may start being 
questioned [Cacioppo & Tassinary, 1990]. 
Correlation of EEG specific rhythms with the 
psychophysical states of a subject implies 
determination of biunivocal relations between 
power spectral density on each bandwidth and 
categories of psychological indices, taken to be 
inferential channels. On such terms, each channel i  
manifests an inference specific  to a bandwidth j. 
That is why it is important to know in what way, the 

average spectral power density BS  on a bandwidth 
j, corresponds by inference EEG to psychological 
aspects meaningful along an analysis channel i. Here 
is the expression of quoted relations: 
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for      njni ,1;,1  , where ij is a function 

which expresses the impact of average power 

spectral density BS  on a bandwidth j along channel 

i, so that relation between BS  and EEG  will be:  
 

BjijijEEG S                               (9)                                                           

 

where   is a 1/ BBn SS   scale factor, is a 

technological constant, while BnS and 1BS  are 
power spectral densities over bandwidth n and 1.   
 
Considering that the psychophysical inference ratio  
implies the inferential reproduction of the 

ijEEG  

psychological functions table, the inferential relation 
between factors may be determined starting from 
(9), as further indicated:    

 

EEGijEEGEEG iij
                            (10)       

 
where

iEEG is the efficiency with which EEG 

biosignal of spectral power density BjS may produce 

an inference along channel i: 
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a relation based on which EEG final form ij  

inferential index may result: 
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Relations (9) and (10) connect the inferential 
function with the average spectral by power density 

ijBS  so that the inferential function per se may be 

seen as a time function, )(tEEG , behavior thereof 
being analyzable in the aleatory processes paradigm.  
 
In order to express the inference of the psychic 
aspects in the neural processes, for local model 
(LEM) advanced by [Wilson & Cowan, 1972] we will 
consider function )(tEEG  as an adjustment 
function (see Fig. 9). 
 

 
 

Fig. 9. The inferential function in LEM model   
 
In such case, the role of the linear filter he(t) is 
granted by component )(tij . For each inferential 

function a random experience is considered, the 
result being seen as one of the possible result 
variants thereof.  is the samples space made of the 
multitude of possible results. Hence the inferential 
function will actually be a collection of signals usual 
in the time continuum, known as trajectories. 
To each point  in space  a function will be 
associated, of limited duration in time: 
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TtTt  ),,(                        (13) 

 
duration 2T being the observation interval. If point  
is set,=j, time function (t,) is a sample function: 
 

 ),( jj t                               (14) 

 
For a multitude sample functions,  type: 
 njtj ,...,2,1)(  ,  setting t=tk , set: 
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is an aleatory variable [Papoulis, 1977]. Thus, the 
process will be seen as a set of aleatory variables, 
indexed by time:  ),( tj , where in order to 

simplify designations, is given up, noting the 
process )(t . 

For a strictly stationary aleatory process 
)(t average  thereof  is: 

 

      dptEt tx )()()( )(



         (16) 

 
where under the integral there is a repartition 
density of an inferential variable )(t for t set 

[Porat, 1994]. When the process is strictly stationary, 
the relation will be: 

xx t  )(                                 (17) 
 
For two set times, t1 and t2, and a repartition density  
common with inferential variables )( 1t and 

)( 2t , type:   21)( ,
21

ttp  , the average of 

the aleatory variables produced will be written, as 
associated to each pair (t1,t2); such average value is 
known as  statistical correlation function of an 
aleatory signal: 
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        (18) 

 
For a strictly stationary aleatory process,  
designations being:  
 

  ),( 2121
ttRμ t)ΨΨ(t                         (19) 

 

We will have for   21)( ,
21

ttp   only one 

dependence on the difference t2-t1, not on absolute 
time values. In such case, (19) becomes: 
 

),()(),( 1221 RttRttR    t1 , t2   (20) 
 
a function which illustrates a maximum in origin 
[Stoica & Moses, 2005]. 
A spectral analysis of aleatory signals can be run on 
statistical and energy criterions, as per theorem 
Wiener-Hincin; statistical correlation function 
determined above, associated with the spectral 
power distribution, yields a Fourier pair. 
 
Example 2. 
We further advance, for an illustration, a 
computation of the values for a set of EEG inferential 
indices, in average values of the spectral power 
densities of the EEG bandwidth, for a psychophysical 
inferential system, dimension  i x j , where  i = 7 and j 
= 8:  
Table 1 indicates function ij  values, as computed 

for an EEG bandwidth specter, values jBS , as well 
as efficiency with which inference is produced along 
each channel. Computation of the EEG inferential 
indices set was run for m=7 and =75. 
 

Table 1: Experimental values BS  , ij and



 
  
In terms of (12), psychophysical tensor EEGfor 
dimension  7x8 becomes: 
 
 
      
 
(19)            

(21) 
 
 
 
 
 
 
The EEG values are indicated in Table 2, as recorded 
on a standard 75 to 265 inferential units scale.   
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Table 2: EEG experimental values  
 

 
 
2.4.3 Acquision of EEG biosignals  
In current practice,  obtainment of a MRI imaging is 
costly, whereas development of an application for 
command and remote control of a movement based 
on such patterns implies an elaborated system, for 
acquiring, processing and defining a stimulus 
induced signal, a system which in terms of sizing and  
collateral utilities goes beyond the application’s 
optimal framework. A markedly lower cost 
alternative,  yet capable of versatile signals form 
analyses, is the acquision of EEG signals making use 
of last generation dedicated headsets.   
Neuro Sky MindSet headset (see Fig. 10) is a device 
able to take over EEG biosignals at forehead level, by 
means of three dry electrodes, reproducing 
neurocortical activity in brain waves power specters, 
and calibrated to supply expression in biosignals of 
attention, meditation and  blinking. 
 

 
 

Fig. 10:  Neuro Sky MindSet headset. 
 
NeuroSky devices can measure multiple 
simultaneous mental states. Brain waves physics is 
nearly identical with the physics of the sound waves, 
where a single microphone may increase the 
complexity of a concert. All of the electrical devices, 
computers included, bulbs, wall sockets and such 
like, emit a specific environmental noise level. 
Such noise is often strong enough to impact the 
brain waves.  As result, EEG lab devices will take over 
aleatory readings, when the reference electrode, as 
well as the primary electrode, are connected to an 
object which does not emit brain waves. In the past, 
the EEG traditional devices went round such 
problem by measuring the brain waves in strictly 
controlled medium, in order not to interfere with 
EEG signals. A medical conductivity gel is used for 
increasing brain waves EEG signals. As EEG devices 
migrate from the lab to wide scale usage, most 
people no longer have a space with no electronic 

interference,  and do not agree to get conductive  
gel on scalp each time they use an EEG device.  
Based on sensors, no gel and no noise-prone 
medium, NeuroSky procedures lower such risks to a 
minimum [NSKY, 2011]. 
Part of the NeuroSky devices involves noise 
annulment. Signal amplification makes gross brain 
waves signal stronger. Filtering protocols oust the 
frequencies of noise known, such as muscular, pulse 
and electrical devices noise. Notch filters oust the 
grid electrical noise, which varies 50 to 60Hz, 
function of each country’s specific regulations. 
Filtering technology is a top preoccupation of 
NeuroSky R&D, and future products will refine 
today’s capacities, yet perfectible as of now.  
Extrapolation of the EEG brain waves signals into 
noises makes use of a reference point and of a 
grounding electrical circuit. By grounding, body 
voltage is brought at the same level with the headset 
voltage.  
The reference point is used for extracting the 
common environmental noise by a rejection process  
[NSKY, 2011]. The ear lobe is an area which feels 
environmental noise the same way the NeuroSky 
frontal sensor does, yet with minimum neuronal 
activity. It is therefore important, for accurate 
operation, that the headset should be connected to 
ear as carefully as possible. For validation, NeuroSky 
ran measurement tests on EEG dry sensor, by 
comparing EEG signals begot from a dry sensors 
system, with Biopac system signals, a well known 
EEG wet electrodes system, widely used in medical 
and research applications.  
EEG signals were simultaneously recorded, by the 
NeuroSky system and the Biopac system. The two 
systems’ electrodes were located at the same places,  
together, as close as possible yet not interfering. Dry 
gold plated electrodes were used for the NeuroSky 
system, whereas for Biopac  disposable wet 
electrodes were used,  with AgCl based gel. EEG 
signals were recorded for various stances, the 
subject under testing  being, on turns, relaxed, 
respectively alarmed, or focusing, or generating 
artefacts by blinking  [NSKY, 2011]. 
The gross EEG signals taken over with dry electrode 
NeuroSky system were compared with the signals 
begot from the wet electrode Biopac system.  FFT’s 
were run in order to compare the EEG signal 
features, especially the power spectrum. The results 
indicate that the NeuroSky system EEG signals are 
compatible with the Biopac system signals.  Biopac 
system EEG’s manifest a noise somewhat higher in 
the low frequency bandwidth. As a result, the 
NeuroSky system is more resistive to noise. The 
NeuroSky system even manifests advantages when 
used environmentally, as well as for applications for 
general use goods. 
NeuroSky also developed a proprietary algorithm 
known as eSense, for the detection of mental states 
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starting from the frequency specters of various type 
brain waves. 
Based on the eSense proprietary algorithms, 
NeuroSky devices can detect, at a quite refined level, 
states such as Attention and Meditation. Each 
second, the headset computes and supplies eSense 
measurements for Attention and Meditation. 
Whenever the algorithm detects information 
apparently incorrect due to noise, respective 

measurement is rerun.  In order to tell apart the 
subject’s mental states,  NeuroSky device can run 
measurements of power spectral density (PSD) over 
the 1 to 50 Hz bandwidth. Power measured over 
such bandwidth interval was integrated by extracting 
the signal with the higher accuracy, then scaling it 
standard, as measurements with a high energy 
variation could be read as erroneous reflections of 
mental states [NSKY, 2011].  

 
 
 
3. EDA Biosignals  
3.1 EDA phenomenology in psychophysiology
 
Part of the peripheral nerve system, the Autonomic 
Nerve System (ANS) acts firstly as a regulation 
function, with a basic role in granting homeostasis.  
Changes manifested in ANS activity can also be 
evaluated by measurements of elecrodermal activity 
(EDA), which has been widely used as a traditional 
method in psychological research. In such terms, a 
number of authors [such as Christie, 1981; Turpin & 
Clements, 1993; Boucsein, 2012] mainly focus on 
interpreting information as related to electrodermal 
activity (EDA). The electrodermal response consists 
in the electrical features changes of an individual’s 
skin, due to interaction among environmental 
factors, size and psychophysical state.  
Normally, the variations in skin resistance and 
conductance are targeted. The electrodermal   
response  principle is basic to a number of technical  
implementations on measuring systems of 
psychophysical aspects, being used for measuring 
variables  specific to the polygraph as well.   
Among the number, implementations can be quoted  
which measure psychogalvanic reflex [Mayer, 1974]; 
which monitor  an individual’s psychophysical state  
[Korenman, 2000]; which visualize  psychophysical 
parameters,  making use of  an computer assisted 
interactive bioreactor multimedia system [Fisslinger, 
1998]; which evaluate fast psychological profiles 
[Grigore, 2013] and other such like.  
An electrodermal response occurs when two 
electrodes applied on skin manifested a low enough 
potential difference for the experiment to be non-
invasive. Between such electrodes, an electrical 

current occurs on epidermal region, based on which 
reactive phasic skin conductance (SCR, information 
carrier) can be measured, [Grigore, 2014]. In the 
absence of such electrical current, tonic basal 
conductance (SCL) is manifested. Edelberg 
distinguishes between individuals electrodermally 
labile, vs. stabile [Edelberg, 1968].  
Such feature may correlate with a series of 
inferential variables in psychophysiology, 
differentiation being possible among the individuals’ 
features based on such electrodermal lability and 
stability.  
In terms of the phasic aspect, epidermal 
conductance is the effect of the eccrine sweat glands 
activity: when such gland secretes abundantly, 
phasic conductance changes manifest; respectively, 
when humidity is absorbed, conductance returns to 
basic values [Boucsein, 2012]. Thus, sweat glands 
behavior can be seen as similar to resistance, whose 
values, the reverse of conductive behavior, drop 
when humidity is maximum, respectively go up 
when humidity falls to normal values; the solution 
quantity secreted by the glands, respectively the 
number thereof evaluated simultaneously, varies 
inversely  with the amplitude of conductance 
change.  
Sweat glands activity expresses actions such as of 
brain trunk reticular formations, of hypothalamus, of 
limbic system and of motor cortex [Bloch, Roland, 
Eric & Alain, 2006]. A complex diagram of the way in 
which the neural control acts on sweat glands 
activity is advanced by [Wang, 1964] (see Fig. 11).  
 



 
 

Fig. 11: Conceptual electrodermal phenomenon [Wang, 1964; Boucsein, 2012] 
 

As indicated in the block diagram above, there are 
two pathways by which the electrodermal response 
is induced, at nerve center system (NCS) level: first 
(EDA 1), impact limbic system by the 
thermoregulatory hypothalamic region, involving the 
amygdala, especially the basolateral side, the 
hippocampus,  a region of dorsal thalamus, anterior 
hypothalamus, as well as posterior and 
supramammillary paraventricular hypothalamic 
nuclei; the second pathway (EDA 2), by contralateral 
impact from the motor and premotor cortex, 
respectively basal ganglionic region, i.e. basal 
ganglia, caudate nucleus, putamen, and globus 
pallidus. 
 
In order to obtain quantitative measurements, 
passing from such block diagram to an experimental 
model will consider especially the theory form of an 
EDA biosignal, the way (spontaneous vs. stimulated) 
in which such signal can be obtained,  the sensors 

type used and, last but not least, such biosignals 
measuring techniques, in direct vs. alternating 
current.  
Electrodermal response behavior in direct current 
and alternating current will be further analyzed. 
 
 
3.2 EDA biosignals in direct current  
 

 
 

Fig. 12: EDA signal [Grigore, R1, 2014] 
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Fig. 12 illustrates the theory form of an EDA type 
biosignal.  
In view of running acquision of EDA biosignals, 
definitions used are as further detailed and 
abbreviated:  
SRR = skin resistance response;  
SRL = skin resistance level (in the range 1k to 
1M); transitory responses, related to sudden 
changes in psychological state, are of 100 order);  
SCR = phasic conductance (skin conductance 
response, expressing conductance transitory 
changes;  
SCL = tonic conductance; skin conductance level, 
expressing SN (sympathetic nerve) excitation level;   
SPR = skin potential response;  
SPL = skin potential level.  
SRR and SCR are equivalent; hence, SRL and SCL are 
also equivalent. While SRR, SCR, SRL and SCL, by 
being exosomatic, depend on an external current 
source, SPR and SPL (endosomatic) do not, the 
reason why the common EDA amplifiers are 
inadequate for SPR and SPL measurement [Edelberg, 
1968; Boucsein, 2012]. 
 
By processing the acquisition data of electrodermal 
activity, such parameters are extracted as further 
detailed: 

 amplitude, expressed in micro Siemens (S), 
as yielded by the difference  between SCR 
response maximum level and SCL at the 
time external stimulus is applied; 

 latency (some3 seconds) expresses duration 
between stimulus application time and SCR 
response occurrence time;  

 duration of conductance rise is the time 
taken by rising slope to be covered up to 
maximum SCR (1 to 3 seconds); 

 comeback semi-duration is recorded at the 
maximum time SCR is touched, up to 50% 
amplitude level (2 to 10 seconds);  

 phasic stadium shift away from the tonic; 
 EDA analysis related to event; 
 Response expression in skin conductance 

[Edelberg, 1968; Christie, 1981]. 
NB. In such terms, direct current used for EDA will 
not go beyond 50 mA/cm2.  
 
Fowles’ model   
In 1974, Fowles designed an electrodermal response 
model in direct current, which he reconfirmed in 
1986 (see Fig. 13). 
 
In absence of quantitative data to support the 
circuit, or quantify any of the factors implied, such 
model is useful only qualitatively. However, Fowles 
manages to pertinently structure the electrical 
representation of connected factors, respectively 
sweat glands resistance (R1 and R2), sweat gland wall 

resistance (R3 and R4), horn layer resistance R5, the 
voltage values along duct (E1 and E2) and horn layer 
voltage E4. As per model advanced by Fowles, E1 and 
E2 are due to ionic dissimilar levels voltage in duct, as 
well as to selective ionic permeability [Boucsein, 
2012]. 

 
Fig. 13. Electrodermal system equivalent circuit, as 

advanced by Fowles [Fowles, 1986] 
 
By hydrostatic pressure built up, membranes 
channel depolarize. Such depolarization makes for 
higher permeability to ionic flow, as well as for lower 

R3 and R4. E3 is the horn layer potential, the 
potentials meeting location. By hydration of the horn 
layer, R5 value falls.  
A possible script for the whole reactive process may 
be described as further detailed:  
- if stimulus application implies rest start conditions, 
at first by sweat response (which rises sweating in  
ducts) R2 slightly lowers; duration of such process 
occurence is in latency range;  
- for a low EDR response, R1 and R2 are not affected, 
respectively SCR does not change; 
- with a high EDR response, sudation is extended to 
horn layer as well, lowering both R2 and R1; 
- a high enough response leads to horn layer 
hydration, hence a lower R5; 
- when the EDR response is quite high, hydrostatic 
pressure built up in duct will activate the epidermal 
duct membranes, which will lower R3. 
In SP potential recordings, potential measured is 
taken to express, mainly, skin potential - 
respectively E3 minus voltage drop in R5. Factors 
considered include Na reabsorption along the duct 
walls, by active transport, which generates high 
negative lumen potentials. The effect thereof on 
measured potentials depend on the relative values 
of R1, R2, and R4 (low E1 values rising for surface 
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 measuring, low R5 values lowering such measuring 
[Edelberg, 1968]).  
With modest responses in case the horn layer is 
relatively not hydrated, high lumen negative 
potential and R2 drop, plus chance R1 drop, cause a 
negative monophasic SPR. High responses which 
trigger membrane response and R3 marked rapid 
drop,  result in negative measured potential falling, 
possibly in a positive component, too, if ducts are 
already filled.  
Immediate response to a specific stimulus was 
experimentally proven to be nearly indistinguishable 
from spontaneous SCR activity. Such problem was 
solved using a 1 to 5 s response window, post 
stimulus, within which the signals were accepted.  At 
a 7.5/min spontaneous SCR rate, the drop in a 
similar spontaneous SCR is by 50%. For more 
accurate discrimination, the window must be even 
narrower. 
The advantages of using conductance in direct 
current consist in concept simplicity, in there existing 
no skin capacitance, and in numberless quotes to 
topic existing in the field literature.  
Shortcomings would be as further detailed: up to 50 
mA/cm2 limit, intervention by change in the 
electromotor voltage generated in circuit on 
electrodes, as  well as in skin (electro-osmosis, sweat 
channels filling up, membranes potentials, skin 
electrolysis and irritation); usage of bipolar 
electrodes take data to come from two skin different 
locations; hence measuring regions are unequal, the 
reason why conductance in the direct current is 
improper for physiological research. 
 
3.3 EDA biosignals in alternating current. 
In the case of conductive media, the load carriers 
can be the electrons for metals, or the free ions in 
suspension (in solution) for the biological tissues. If a 
direct current passes through an ionized solution, 
(which also happens in Fowles’ model), a 
polarization phenomenon occurs, which can cause 
the tissue to warm up to self-destruction, in limit 
cases. Gildemeister  was among the first to go round 
such inconvenient, by using alternating current and 
by measuring total opposition to passage thereof 
through a tissue  [Gildemeister & Kaufhold, 1920; 
Lawler, Davis & Griffith, 1960].  
In such case, impedance is the manifested feature 
related to physiological activity of tissues subjected 
to alternating current. Measuring impedance Z on a 
biological tissue involves both tissue electrical 
resistance R, and capacitive reactance Xc thereof, 
after the relation Z2 = R2 + Xc2.  In terms of physics, 
resistance expresses a conductor’s opposition to 
alternating current, basically the same in biological 
tissues and in nonbiological conductive materials 
[Kay, Bothwell, & Foltz, 1954; Nyboer, 1959], 
whereas biological tissue capacitive reactance is 
caused by the extra opposition to alternating 

current, by the capacitive (stocking) effect of bilipidic 
cell membranes, of the tissue interfaces and of the 
structural features [Baker, 1989; Barnett & Bagno, 
1936; Schwan & Kay, 1956].  
Membranes acts as dielectric, or as an insulator 
which sets apart the extracellular and the 
intracellular fluids, behaving as reinforces of the 
biological condenser [Grigore & Moldovan, 2015].  
With the alternating current (similarly to direct 
current case) skin humidity is a conditional factor for 
penetration into organism. The low (under around 
5.000 Hz) sinusoidal frequencies are carried only 
through the conjunctiva tissue of the body [Ivorra & 
Aguilo, 2001, Ivorra & Rubinsky, 2007], the higher 
frequencies penetrating the cell outer layers. In case 
of using rectangular signals, higher frequency 
harmonics manifest, able to penetrate the cell even 
if basic frequency is low.  
Authors such as Boucsein, Schaefer and 
Neijenhuisen maintain that electrodermal recording 
exosomatic techniques consider prevailingly the 
tonic, not phasic, measurement [Boucsein, Schaefer 
& Neijenhuisen, 1989]. Nevertheless,  measurement 
methods in phasic alternating current are the more 
useful in testing electrical models of electrodermal 
response; such methods were developed for such 
adequate measurement concepts, for continuous  
recording of impedance and of angular phase, the 
latter seconding impedance as a descriptor of the 
physiological parameters [Chumlea & Guo, 1997, 
Baumgartner, Chumlea & Roche, 1988; Lukaski & 
Bolonchuk, 1987; Subramanyan, Manchanda, 
Nyboer & Bhatia, 1980], expressed in degrees, as an 
arctangent ratio Xc/R, function of current frequency 
used. 
Branch literature also notes the existence of two 
distinct types human electrical impedance 
[Sutherland, Dorr & Gomatom, 2005], i.e. skin 
impedance, which is a surface impedance; and 
internal impedance, of the whole body, which is in 
principle resistive. The surface epidermis layer, 
containing both dead cells, deposited on a live layer, 
heterogeneous and anisotropic, illustrates both 
resistance and capacitance [Sălceanu, Iacobescu & 
Anghel, 2013]. Capacitive impedance falls in direct 
variance with the frequency values for high 
resistance.  
A number of authors remark the drawbacks of the 
method of using alternating current in electrodermal 
measurements, due to the skin capacitive features, 
which push up conductance values [Fowles, Christie, 
Edelberg, Grings, Lykken & Venables, 1981].  
Since, as above indicated, skin capacitance varies 
directly with the measuring frequency, by using 
under 40 Hz low frequency through a phase-
sensitive rectification skin capacitance can become 
negligible. 
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By experimental results, quoted authors have 
proven that the electrodermal potential is a more 
pregnant parameter than conductance, as being 
much less dependent on stability of skin region 
contact with electrode, a fact which causes artefacts  
to be more pronounced in skin conductance curves, 
than in potential curves.  
The method which Fowles used in 1981 requires 
direct current, and cannot tell apart conductance 
from the electrodermal potential waves. In order to 
research triggering of electrodermal mechanisms, 
electrodermal potential will not be measured in 
direct current; and will be compared with the 
conductance results in alternating current, which is 
possible by phase-sensitive adjustment, by real-time 
signal processing, and by variables conversion. 
The measuring system in alternating current is much 
more complex, needing a higher number of 
parameters monitored; however, AC conductance 
allows for simultaneous measurement of 

electrodermal potentials, too, in the same skin 
region. Also, in absence of direct current, 
requirements are much less restrictive for the 
electrode technique, no monitoring of error 
potentials being needed, or of polarization error 
during usage. Last but not least, unlike with direct 
current usage, sensors do not attack the skin, AC 
conductance bearing no influence from electric 
motor voltage change. 
The electrodermal potential becomes thus a 
valuable index, enabling us to reach at the 
autonomic and somato-motor aspects of cognitive 
operation – emotion, motivation and attention; 
electrodermal potential manifests in absence of 
direct current, with the possibility to connect, by 
unipolar sensors usage, two aspects: electrodermal 
potential level (SPL) and electrodermal potential 
response (SPR), such aspects being considered in 
model applied by present research [Grigore, 2014].  

 
4. EDA biosignals measuring procedure 

4.1 Phasic neurostimulation  
 
A number of our recent studies [Grigore, 2013] note 
that when an alternative voltage signal is used, as 
well as a step signal, for simultaneous skin 
stimulation, in phasic state thereof the 
electrodermal response liability, respectively, 
stability level of different individuals can be easily 
determined. Response potential, in such case AC, 
acts as an inferential marker. 
 
Such type stimulation opens projective 
psychophysical biunivocal correspondences. 
Electrical markers can thus fairly accurately evaluate 
the bioelectrical events accompanying 
autoregulation processes [Paraschiv, Grigore & 
Constantin, 2013]. 
 
A neurostimulator channel being opened sets in 
correspondence the region being measured with the 
targeted psychophysical function; whereas the 
neurosignals picked at sensors’ level contain 
information regarding applied stimulus response 
pattern; such information must be adequately 
analyzed, for the mental states aspects to be 
extracted [Paraschiv, Grigore & Constantin, 2013]. 
 
We approached such neurostimulation procedure in 
the prospect of the implied signals mix: step 
excitation signal, AC excitation signal and step 
response signal [Grigore & Moldovan, 2015].  
 
Step excitation signal (see Fig. 14, a) compounds 
with the sinusoidal excitation signal (see Fig. 14, b). 
 
 
 

 
 
 

 
a) 

 
b) 

Fig. 14: Excitation signal: a) step excitation signal; b) 
AC excitation signal.  

 
Response signal. Fig. 15 indicates the electrodermal 
response signal to a single excitatory impulse.  
  

 
Fig. 15:  Diagram illustrating step response signal in 

phasic neurostimulation by a single excitation 
impulse  
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Raw (acquision) data underwent a filtering 
procedure, for ousting artefacts and for formatting, 
in view of usage thereof in inferential algorithm.  
 

 

 
Fig. 15.  AC neurostimulated skin potential response 

(SPR) diagram, after filtering and formatting 
procedure 

 
4.2 Electrodermal inferential model 
Inferential function will act as regulation function in 
the electrodermal model as well (see Fig. 16).   
 
 

 
Fig. 16. Electrodermal inferential model (EIM) 

 
Specific here are the two external stimulus signals of 
galvanic skin response, )(1 tu  and )(2 tu , which 
engender an excitation function hes(t), and activation 
(firing) functions, fa(t), responsible for opening 
response channels, which are the expression of 
spontaneous stimulus sent through the activating 
nerve cells ca, and manifested in electrodermal 
liability. 

 
The inferential electrodermal model that we advance 
there exists a symmetrical linear system reacting to 
an excitatory impulse he(t), activated by the ce nerve 
cells; respectively, a similar inhibiting system 
manifested by functions hi(t), under the action of 
inhibitor neural cells ci,, conjugated on the 

regulation loop with the inferential 
function )(tEDA . 
 
The excitatory impulse, compound with the 
stimulation functions, will generate, at limbic system 
level, respectively at motor system level, the 
nonlinear behavior described by )(vh

SLe
 and 

)(vh
SMe , whose variations are projectively 

expressed by the inferential function, so that, it 
becomes possible to identify changes (in the basal 
physiological changes table) of muscular tonus 
intensity and distribution, of skin electrical 
resistance and conductivity (e.g. fear and fright drop,  
self-possessiveness and good temper increase), and 
such like. 
 
Fig. 17.A illustrates a quite simplified electrical 
diagram of the electrodermal inferential model 
(EIM).  
 

 
 

Fig. 17. Simplified EIM electrical diagram 
 
In terms of electricity, after firing the electrodermal 
chain by activation of impedance EDAZ , source G  

of GZ impedance opens and becomes active, such 
activity being described by the inferential 
function )(tEDA . Source activation is possible by 
applying the excitation signal at point C level. The 
real form of a firing signal manifested by activation 
of impedance EDAZ  is illustrated in Fig. 18, where, 
for the seven stimulation channels, the firing 
sessions will be noted only for the first step impulse, 
respectively for the last two. 
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Fig. 18. Skin impedance firing real signal 

 
Actual voltages balance at point B level can be 
expressed as EDAGV UUU  , a sum expressible 
function of the two impedances and actual current 
running through, as stated below: 
 

)( EDAGV ZZIU                         (22)          
 
Balance (22) for a relatively low time value, will meet 
requirement below: 
 

.ctZZ EDAG                         (23) 
 
Condition (23) states the relation of the two 
impedances, respectively the work regime of source 
G, of interest for present study. Hence the following 
relations: 
 





EDAEDA

GG

UZ
UZ

                 (24) 

 
Such relations illustrate the direction of source G 
activation or inhibition, visible through level EDAU  
, as measured in point C. In other words, when skin 
conductance rises, source G is active, function  

)(tEDA  describing linear activity thereof. 
 

 
 

Fig. 19. Graph for a transit model of an AC 
electrodermal neurostimulated potential. 

 
In order to determine the mathematical expression 
of the AC neurostimulated electrodermal potential 
dynamics, ultimately expressed as an inferential 
function, we applied graph in Fig. 19, where 
transition function u(t) was evaluated, from point A 

where skin potential level (SPL) value is acquired; to 
point B, where the skin potential response (SPR), is 
acquired [Grigore, 2016]. 

 
4.2.1 Allotted energy  
AC galvanic skin neurostimulation process runs 
simultaneously, for the same subject, along a 
number of channels. The effect that such stimulation 
can possibly cause, reflected by electrodermal 
potential transition, is evaluated as power. For each 
stimulated ichannel, allotted power form will be:          

 
(25) 

 
where Ii is taken to be stable (stability granted 
through neurostimulation equipment development), 
so that energy consumed in transit can be 
determined by integrating relation (25):   
 


2

1
)()(

t

t iii dttuItS                     (26) 

 
Si expressing energy allotted to channel i in 
neurostimulation. For the whole process, on i 

stimulation channels i,   ni ,1  , allotted energy 
is expressed as a matrix, as further detailed: 
 


























)(

)(
)(

2

1

tS

tS
tS

S

i

                              (27) 

 
4.2.2 EDA inference Level 
We took each neurostimulation source afferent to a 
channel i to manifest an inference specific to a 

bandwidth j,   nj ,1 .  
 
That is why we studied how allotted energy Si 
manifested in physiological potential , produces 
inference on a paired measuring channel i  and 
bandwidth j. Relation of   and  is as further 
detailed:     
                                        

                                (28)                                         
 
where   is a scale factor, form /(umax-u0), umax is 
maximum potential on scale used, whereas u0 is the 
response potential minimum value, up to which a 
psychophysical inference can be intercepted 
[Grigore, 2016]. 
 
The characteristic transition neurostimulation index, 
an AC electrodermal potential, is parameter mAB, 

)()( tuItP iii 
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defined as the slope of the line containing segment 
AB (see Fig. 19). The form of mAB, for a 
neurostimulation channel i, can be expressed as 
below: 
 

21

21

tt
uu

m ii
iAB 


                          (29)    

 
Significance of slope 

iABm depends on by skin 

potential response (SPR) level, position thereof being 
a function which varies directly with the 
psychophysical inference level. Parameter variation 

iABm  may be seen for ii uu 21  , 

where 0
MINABm ; respectively for 02 uu i  , there 

resulting a relation as further expressed:  
 

21

01

tt
uu

m i
ABMAX 


                          (30) 

 
Given that each transition along a channel i produces 
a specific inference on a bandwidth j, form of slope 

ABjm  afferent to bandwidth j, for a minimum u0  

potential value, can be expressed as: 
 

21

01

tt
uu

m j
jAB 


                          (31)                               

 
We will define physiological component ij in 

inferential relation, for channel i and bandwidth j, as 
potential SPR measured on stimulation channel 
multiplied by ratio of slope afferent to stimulation 
channel and slope of inference bandwidth, as further 
expressed: 

                                                                                

i

j

AB

AB
iij m
m

uu 1)(                       (32) 

relation by means of which, inference form (28) 
becomes: 
 

 
  ii

ji
EDA uuuu

uuu
ij

210max

011







              (33) 

 
In order to determine inferential electrodermal 
function 

ijEDA form, we considered electrodermal 

potential transit for a channel I; also, the way in 
which transit causes inferencese, and the mean 
electrodermal potential response, at level of all i 
neurostimulation channels.  We defined efficiency of 
neurostimulation process along channel i, as the 
ratio of energy allotted to such channel i and the 

mean of the energies allotted on all of the channels 
[Grigore, 2016].  
 
By means of the relation (26) we set the form of the 
mean energy allotted by neurostimulation to all of 
the channels i: 

                           

 dttututu
i
IS

t

t i 
2

1

)()()( 21      (34)                     

 
where we considered IIII i  21 , a 
requirement granted by the neurostimulation 
equipment construction. 
 
 (26) and (34) yield efficiency for each channel i as 
further expressed: 
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      (35) 

 
On the other hand, considering that the 
psychophysical inference ratio implies the inferential 
reproduction of the whole psychological functions 

ijEDA  table, we determined that, for development 

thereof, inferential relation of factors will be 
expressed as:   
                   

ijiij EDAEDAEDA                              (36) 

 
signifying electrodermal inferential indices, 
components which, considering (33), yielded the 
final form of electrodermal psychophysical 
tensor

ijEDA : 

 
 

      
(37)  

(34)   
 
 
 
 
in which we identified and rewrote inferential 
electrodermal index 

ijEDA form, as: 
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Example 3. 
We further present a computation instance, of an 
electrodermal inferential index, value, out of SPL and 
SPR electrodermal potentials values, for an 
inferential psychophysical system, size  i x j , where  i 
= 7 and j = 4:  
 

 
 

Fig. 20. Transit curve approximation 
 

721 ,...,   efficiencies were determined by 
approximation of the transition curve (see Fig. 20) to 

line segment AB , rewriting the allotted energy form 
in such transition:      

                                                                

  12212
ttuuIS iii                   (39) 

 
and the mean energy allotted for all of the i = 7 
neurostimulation channels: 

 
(40)                                                                                                       

 
 
 
(39) and (40) considered, (35) for channel i, 
becomes:  

   
 






 7

1
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217

i
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ii
EDA
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i

                  (41)                                

 
By substituting form (38) in (34), electrodermal 
psychophysical tensor for size 7x4 becomes:        
 
 
 

(42) 
 
 
 
 
The electrodermal inferential functions values were 
determined by relation (42) for and umax = 5000 
mV; and recorded on a 75 to 265 standard 
inferential units [u.inf.] scale. 
Table 3 indicates the experiment values. 
 

Table 3. Experiment values  
 

 
 
 
4.2.3 EDA biosignals acquision. MindMiTM 
psychological evaluation system  
MindMiTM Integrated System implements a 
neurostimulation procedure, respectively the 
inferential model above described. Equipment for 
the acquision of stimulated electrodermal response 
potentials is the palm scanner MindSpringTM, (see 
Fig. 21), an electronic equipment expressing the 
updated variant,  with facilities for cloud computing,  
patented by author as Electronic Equipment and Fast 
Evaluation Method of Psychological Profiles - 
RO127615, [Grigore, 2013].   
Such equipment generates, formats and applies step 
voltage signals, and sinusoidal signals on measuring 
regions of the palm, through silver type sensors 
adequately located on upper side of such electronic 
equipment lid, stimulation the skin in alternating 
current. 
 

 
Figura 21: MindMiTM Psychometric System 

(https://www.mindmisystem.com) 
 

Scanning equipment can measure electrodermal 
parameters in a very low scanning time, being able 
to reach a server by any device and computation 
means, to connect to internet by desktop, laptop, 
iPod, cell phone, and such like. 
Being run in a computation equipment 
configuration, endowed with integrated mini-
computer (a solution conferring autonomy) 
equipment can be used for running scannings even 
in case the internet connection falls, data scanned 
being checked, validated, pre-processed, saved and 
readied to be sent to server after reconnection 
online. 
By such capacity for processing, checking and 
validation acquision data in real time, at scanning 
equipment level, equipment supplies the user the 

   



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1
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variability analysis rate of the acquired signal level, 
so that, for a low enough variation of the whole 
signals set, the scanning session being possibly 
stopped before maximum time limit allotted to 
reading cycles, a fact which causes a high data 
validation and fidelity. 
The scanner takes over electrodermal information 
with a low work frequency, thus barring out any 
interference with any proximal source of 
radioelectrical signal. By means of the implemented 
software program, the scanner records the SPR  AC-
stimulated response potentials over a specific  
number  of  measuring cycles,  also reading  and 
storing  such  signals’ amplitude  values  [Grigore, R2, 
2015]. 
Method uses a solution type cloud computing by 
galvanic neurostimulation of the skin and, 
consequently, as per autoregulation principle, by 
inverse connection installed between system outlets 
and input sensors region, phasic conductance 
response perceived by skin will be in projective 
correspondence with the bioelectric events occurred 

in organism, generated during the autoregulation 
processes by which psychophysical functions are 
manifested.  
Opening a neurostimulator channel will set in 
correspondence the measuring region with the 
targeted psychophysical function, whereas the 
neurosignals picked at sensors level will contain 
information regarding the response pattern for the 
stimulus applied. Such aspect manifests through 
actual projective probing of the brain waves, in view 
of identification one set of variables which, 
correlatively interpreted, will supply an objective 
psychological profile to the individual evaluated.  
A number of interrogations of the measuring regions 
will be run, by applying at skin level one step 
excitation signal  and a carrier sinusoidal signal,  
recording and stocking simultaneous response 
signals,  skin conductance variations, expressed in 
corresponding to voltage variations, over each 
interrogation cycle, together with excitation signal, 
in a  file of ratio-input data.  

 
5. Cognitive typology weighing 
5.1 EEG-EDA inferential dual module  
Dual behavior analysis of electroencephalographic 
and electrodermal response biosignals can start 
from local model (LEM) advanced by [Wilson & 
Cowan, 1972] where, as indicated (at 2.4.2; see Fig. 
9), we take the regulation function to be inferential. 
In the branch of the neural processes resulting in AC 
stimulated electrodermal response, model (MIE) 
advanced also uses such electrodermal inferential 
function as a regulation function.  
 

 
Fig. 21. Inferential dual module 

 
Fig. 21 presents a dual inferential module which we 
considered in present study and based on which we 
advanced unified concept EEG-EDA, which yield 
factual experimental results, in the behavioral 
aspects. In order to cover targets advanced, we 
identified a common form for the cognitive 
psychological aspects under consideration. 
 
 
5.1.1 Cognitive function  
Aspects of interest as determining cognitive 
typologies correlate with the specific way in which 
inferential indices find an expression in cognitive 

acts. The table of inferential indices can be 
expressed by a set of cognitive functions, as 
indicated below: 

 C                              (43) 
where expresses inferential weigh, measuring the 
manifesting level of the inferential index in cognitive 
function. Cognitive function tensor is expressed as 
weighings matrix multiplied by the inferential 
indices, as below: 
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which becomes as further expressed: 
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5.1.2 Inferential pattern, cognitive typology  
In order to identify the cognitive typologies, matrix 
Cij factors will be paired based on a number m of 
polarity criterions, thus yielding a set of inferential 
pattern, expressible as below: 
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Compounding the inferential patterns can yield a 
number t = m(m-1) of  cognitive typologies,  
expressible as: 
 

        tytxSSV
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which, in their turn, pair into m cognitive classes. By 
selecting the weighing the highest value in sum (47), 
the most stable cognitive typology was begot. 
[Grigore, 2016]  
 
5.1.3 Weighing correspondences of EEG-EDA 
cognitive typologies biunivocal relations 
In multiple experiments, on an number of subjects 
simultaneously evaluated by means of MindMiTM 
System and NeuroSky headset, and by application of 
mediation on power spectral distribution on each 
bandwidth in view of determining the inferential 
functions, respectively the EEG cognitive functions, 
we found a persistent occurrence of a specific 
pattern whose low variability is of interest for our 
comparative study, electrodermal response of which 
being yielded by galvanic neurostimulation 
procedure. 
In our approach we targeted interception of the 
most stable cerebral behavior. Our vision aims to 
identify the specific factors and features of the 
stable behavior types, which will finally yield indices 
related to personality typologies expressed in both 
EEG, and EDA, phenomenology. 
The dual experiment we ran on EEG, respectively 
EDA, biosignals, correlated two brain frequency 
bandwidth regions within which is the two types 
cognitive functions manifest. In order to distinguish 
between the afferent functions of such two regions, 
we took such cognitive functions to be tonic, 
respectively atonic. Considering such functions based 
on brain frequency bandwidth highlights a series of 
high and very high frequency (tonic) cognitive 
functions, respectively a distinct series of low and 
quite low frequency (atonic) cognitive functions (see 
Table 4).  
Identification of EEG-EDA functions pairs require a 
ranking routine based on correlation level between 
such functions groups, evaluated progressively, up to 
one-to-one functional identification. Fig. 23 below 
instances a diagram of patterns made of EEG and 
EDA cognitive functions pairs, identified by a 
progressive sorting out routine. 
 

 
 

Fig. 23. Progressive EEG and EDA cognitive functions 
pattern, as yielded by simultaneous acquision data 

 

In order to assess cognitive typologies for a lot of 
subjects evaluated simultaneous by EEG and EDA 
measuring devices, a weighing function must be 
determined, equally expressed in cognitive 
components measurable by electroencephalography 
and electrodermally. Weighing function, mediated at 
lot level, expresses intelligibly level of a cognitive 
typology, as determined by EEG-EDA measuring. 
 
Table 4: Ranking cognitive functions based on brain 

frequency bandwidth 
 

 
 
For a start, we state that CTONi is a tonic cognitive 
function, while CATONi is an atonic cognitive function. 
For a pair of complementary cognitive functions, 
there is a behavior function Ki, whose form is 
expressible as below: 
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Behavior function will thus be found in cognitive 
typology, expressible as below: 
 

  EDAEEGnEDAEEG KKKV ;21; ;....;       (49)   

 
whereas in order to compare manifest expression of 
a cognitive typology in biosignals distinct in terms of 
physiology, weighing function afferent to behavior Ki 
is expressible as below: 
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where 
n

h
2

100
max  . 

Based on (50) total weighing function for one subject 
in the lot is expressible as below: 
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respectively the mean weigh, for a lot of m subjects 
is expressible as below: 
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5.1.4 Correlation of EEG-EDA cognitive function 
probability values 
Let S be a space whose subassemblies consist in the 
sum total of behavior functions Ki taken as additive 
classes, made of events whose values are Ai and Bi , 

as per (48). To each event k in class K,  corresponds  

a real number 1)(0  kP  will correspond, 
named k probability, a sure event s being expressible 
as 1)( sP  (as per Kolmogorov’s axioms). For a lot 
of m subjects, prone to n behavior functions, 
cognitive functions probabilities 

)();.....();( 21 nmmm kPkPkP will be expressible as 
below: 
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The strings of probabilities EEGim kP )( , respectively  

EDAim kP )( , can be analyzed statistically.   

 
 
6. The coordinates of the experimental work
6.1. Introduction 
The experimental work uses an original method 
ensuring a double interception of the brain activity, 
so as to determine the relation between 
electroencephalographic and electrodermal 
potentials, inferentially expressed in personality 
typologies. The double interception of the brain 
activity is expressed in the correlation between the 
cognitive functions, as determined from the average 
of the power spectral densities of the EEG biosignals 
and those determined from the basal electrodermal 
(SPL) and response (SPR) potentials, according to the 
explanations from 5.1. The research therefore refers 
to the use of two different techniques, which involve 
biosignals of different physiologies, in order to 
obtain appropriate variables for every technique in 
part, the same type of cognitive behaviour, 
expressed in electrical signal. 
 
6.2. Assumption 
It is known that the electrodermal response in 
conductance is the effect of the activity of the sweat 
glands. When they have an abundant secretion, 
phasic changes appear by increasing the 
conductance, i.e. when the moisture gets absorbed, 
the conductance comes back to the basic values. The 
behaviour of the sweat glands, to this respect, may 
be compared to some resistances of which values, 
reverse from the conductance, decrease when 
moisture is maximum and increase when it drops to 
normal value, the amount of fluid secreted by the 
glands and their number, simultaneously evaluated, 
being inversely related to the amplitude of the 
conductance changes [Edelberg, 1968; Boucsein,  
2012].  
Also, the process of stimulating the phasic 
electrodermal level, with a stepped and a sinusoidal 
signal, may show response potentials connected to 
autonomous and somatic-motor aspects of the 
cognitive function. [Grigore, 2014].   

Based on these considerations, we assume that 
there is a significant correlation between the values 
of the cognitive functions determined by the average 
of the spectral power densities of the EEG biosignals 
taken from the scalp and the cognitive functions 
corresponding to the basal (SPL) and response (SPR) 
electrodermal potential measured at the same time, 
on the palms of the same individual. 

 
6.3 Method, electronic equipment, measurement 
and analysis software, participants 
The tests were conducted on a sample of 100 
subjects aged between 20 and 65 years. The 
participation in the experiment was by voluntary 
option, each of the subjects being informed on the 
conditions of the experiment. 
For the performance of the experimental work, we 
used as electrodermal neurostimulator, the palm 
scanner of the psychometric system MindMiTM 
presented in 4.2.3, by means of which we applied, 
on the palms of the evaluated subject, an 
electrodermal excitation signal, obtained by 
composing two signals: one step signal and one 
bearing signal, and we received through the 
specialised acquisition interface a response signal of 
which envelope contains essential information about 
the psychophysiological processes on which we 
proposed to identify an inference. Hence, we 
expressed the projective response of the 
neurocortex, on each channel in part, in inferential 
functions, determined by information about the 
level of electrodermal activity, by identifying the 
levels of electrodermal potential, stimulated in 
alternative current of SPL type - basal potential and 
SPR type - response potential. Also, we made a 
simultaneous take-over, through an acquisition 
server interface, model Open VIBE v1.2.2, from the 
INRIA, of a set of EEG-type signals from the forehead 
of the same individual, by means of the professional 
headpiece Neuro Sky MindSet (Figure 24).  



 

 
Figure 24: Flow chart of the measurement system 

 
Progressive sorting of the pair functions. With the 
purpose to determine the cognitive typologies for m 
= 4 polarity criteria (cognitive classes), both EDA 
biosignals and EEG biosignals have been processed 
with an original software interface, particularly 
designed for this experiment, for the results to be 
subject to a correlation analysis. The software 
interface uses the mathematical model presented in 
2.4.2, 4.2 and 5.1. with the purpose to identify and 
store mixed cognitive functions, as also the 
progressive sorting subroutine (Figure 25), by means 
of which a one-on-one correspondence between 
them is identified for Pearson bivariate correlation 
assays made on the sample of 100 subjects. 

After completing the database enrolment process, 
the set of EEG cognitive functions (F1, F2, F3, F4, F5, F6, 
F7 and F8) related to the brain frequency bands is 
established. These functions, grouped based on the 
criteria provided in Table 4, are reference to 
progressive sorting.  The result of this multistage 
selection of the EDA function, corresponding to an 
EEG, is included in a pair record. The tonic and atonic 
cognitive functions so determined are established in 
bipolar indicators of inferential pattern. The 
correspondence from the pairs record is presented 
in Table 5. 
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Figure 25: The algorithm of progressive sorting subroutine 
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Table 5: The correspondence between tonic and atonic cognitive functions in brain frequency bands 

 

 
 
Establishing the cognitive typologies. After 
determining the inferential pattern bipolar 
indicators: Ia, Ib, Oa, Ob, Da, Db, Ra  şi  Rb and their 
related values, four sets of indicators have been 
extracted, corresponding to the behavioural 
functions KI, KO, KD, și KR of which meaning was 
assigned in a bipolar manner according to the 
formula (48), thus KI received one of the values Ia 
and Ib, KO received one of the values Oa and Ob, KD 
received one of the values Da and Db, and KR 
received one of the values Ra and Rb. 
In order to establish the cognitive typology, formula 
(47) was used to calculate the shares resulted from 
summing up the values of the cognitive functions, 
organising each set of indicators corresponding to 
the functions KI, KO, KD, și KR in two groups of 
indicators with an antagonic inferential significance. 
The value of a bipolar indicator is given by the 
arithmetic average of the values of the indicators 
corresponding to a group. By comparing the values 
of the pair of inferential pattern bipolar indicators, 
the highest value was selected, which constitutes 
the share of the set of indicators corresponding to 
each behavioural function K. The inferential patterns 
S1....S8 were assigned to the cognitive typologies V, 
so each typology will have a corresponding number 
of two patterns and each pattern will have two 
bipolar indicators out of the eight. The relation 
between the cognitive functions (Cij) that meet here 
the role of bipolar indicators, the inferential patterns 
(Spq), the cognitive  
 

 
typologies (Vxy) and the cognitive classes (Tm) is 
presented in Table 6. 
 

Table 6: Assigning the inferential patterns in 
cognitive typologies 

 

 
 
To determine the cognitive typology, we evaluated a 
group of 16 shares Pv1, Pv2, ..., Pv16, corresponding 
to the 16 typologies. The evaluation of these shares 
is made by comparing the related sums calculated 
from the values of the bipolar indicators of 
inferential pattern, identified as per Table 7. The 
highest share of these sums indicates the basic 
cognitive typology of the evaluated individual 
[Grigore, 2013]. 
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Table 7: Assigning the bipolar indicators in shares 
 

 
 
Fig. 26 shows an example of distribution of the 
specific items of the cognitive typologies for four 
cognitive classes.  
Another form of representing the relation between 
the behavioural functions, the cognitive typologies 

and the cognitive classes, in the design of the mixed 
EEG-EDA approach, is given as example in figure 27.  
 

 
 

Figure 26: The distribution of specific items of the 
cognitive typologies for four cognitive classes 

[Grigore, 2016]. 
 

 
 

Figure 27: The diagram of behavioural functions in cognitive classes and the brain frequency bands. 
 
6.4 Variables, working procedure 
The test was conducted in two steps of simultaneous 
EEG-EDA acquisition, i.e. at T1 and T2, with a break 
of 6 months between the steps. 
During the experiment, the following were 
monitored in the EDA electrodermal activity: 
-independent variables: the cognitive functions: Ia, 
Ib, Oa, Ob, Da, Db, Ra, Rb and the behavioural 
functions type Ki (I_EDA, O_EDA, D_EDA, R_EDA) and 
the probabilities and shares thereof, determined in 
the process of identifying the cognitive typology;  
-dependant variables: the level of basal (SPL) and 
response (SPR) electrodermal potential;  
The following were monitored in the EEG activity:  

-independent variables: the cognitive functions: F1, 
F2, F3, F4, F5, F6, F7 și F8  and the behavioural functions 
type Ki (I_EEG, O_EEG, D_EEG, R_EEG) and the 
probabilities and shares thereof, determined in the 
process of identifying the cognitive typology;  
-dependant variables: the average of the spectral 
power densities in the Delta, Theta, Low Alpha, High 
Alpha, Low Beta, High Beta, Low Gamma, Mid 
Gamma bands. 
In order to make a measurement, we achieved the 
measurement loop by positioning the Neuro Sky 
MindSet head piece on the subject's head and 
applying the subject's palms on the sensors of the 
palm scanner MindSpringTM. We started the EEG 
head piece, the scanner and the acquisition 
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interfaces MindMiTM and Open VIBE v1.2.2. At the 
level of the software interface for mixed evaluation, 
we conducted the primary processing and listed the 
values for inferential functions, as also calculated the 
cognitive functions EEG and EDA.  
The EDA biodata were acquired with a sampling rate 
of 20 readings/ second [Grigore, 2013] and the EEG 
biodata were acquired with a sampling rate of 512 
readings/ second. 
For numeric evaluation, the following measurement 
units were used: 

 for potentials of electrodermal response – 
[mV]; 

 for inferential functions - conventional units 
[u.inf.]; for cognitive functions and 
behavioural functions - scale (25 - 265);  

 for spectral power densities: accuracy units 
[aq.u.PDS], specific to the measurement 
instrument, on the scale (0 - 12). 

The final correlation analysis of the data was made 
with PASW Statistics 20.   
The experimental data are shown in Appendix 1. 
In order to obtain the correspondence between the 
two types of biosignals, reflected in the personality 
typology, we used two ways: analysis of the 
correspondence of the shares of cognitive 
typologies, as described in 5.1.3, and correlation 
analysis of the probabilities of the cognitive 
functions, as described in 5.1.4. 
For the correlation analysis, we used the Pearson 
coefficient as statistic tool, by means of which the 
level of the correlation between variables was 
tested. The correlation was tested progressively, as 
follows: 

1. The correlation of the total sums of the 
probabilities of the cognitive functions at T1 
and T2; 

2. The correlation of the sums of the 
probabilities of the cognitive functions VHI-
VLO at T1 and T2; 

3. The correlation of the sums of the 
probabilities of the cognitive functions HI-
LO at T1 and T2; 

4. The correlation of the probabilities of the 
tonic and atonic cognitive functions at T1 
and T2; 

Also, using the relations (48), (49), (50), (51) și (52) 
we evaluated the shares of the cognitive typologies 
at T1 and T2. 
 
6.5 The Pearson bivariate correlation analysis 
Pearson coefficient used in this research reveals the 
correlation between two continuous variables, being 
also referred to as the product-moment or Pearson r 
coefficient.  A positive value r  expresses a positive 
relation between the two variables (A higher, B 
higher), while a negative value r indicates a negative 
relation (A lower, B lower).  A correlation coefficient 

equal to zero indicates no relation between the 
variables.   
The correlation of the total sums of the probabilities 
of the cognitive functions at T1 and T2. 

As shown in 5.1.4, using the Kolmogorov's axioms, 
we calculated the probabilities of the cognitive 
functions that decide the behavioural functions 
according to (48), for the two sets of data taken from 
a sample of 100 subjects, at the moments T1 and T2. 
The arrays of values resulting from the sum of all 
these functions, grouped based on their specific 
physiological category, were subject to the 
correlation analysis. Hence, Table 8 shows values of 
the Pearson coefficient that indicate a very good 
association between the values corresponding to the 
same type of biosignals T1 and T2: 0.868 for EDA, 
0.861 for EEG. This indicates a high test-retest 
reliability, for both types of biosignals.  
A very good relation level was also obtained 
between the total sums for EDA-EEG, of 0.840 at T1 
and 0.829 at T2, value sthat indicate test-retest 
reliability between the two evaluation systems, this 
being a first confirmation of the working 
assumption. 
The correlation of the sums of the probabilities of the 
cognitive functions VHI-VLO at T1 and T2. 
In the logic of the above results there are also 
included those presented in the Tables 9 and 10 
concerning the systematization of the overall 
cognitive functions after brain frequency. Given that 
the determined probabilities for correlation analysis 
are subject to the relation (53), and in selecting the 
cognitive function we used (48), the results of the 
correlation level for antagonic frequency categories 
will be symmetric against zero. We can find very 
good correlation values for the EDA-EEG functions of 
very high and very low frequency, of 0.884 at T1 and 
0.838 at T2. Also these values, as with the total sums 
of the probabilities of cognitive functions, confirm 
the high test-retest reliability of the two 
measurement systems and, by this, also confirms the 
working assumption. 
The correlation of the sums of the probabilities of the 
cognitive functions HI-LO at T1 and T2. 
A third confirmation of the working assumption is 
brought by the values of the Pearson bivariate 
correlation coefficient, presented in the Tables 11 
and 12 also in the EDA-EEG low and high-frequency 
functions, of 0.830 at T1 and 0.849 at T2. 
The correlation of the probabilities of the tonic and 
atonic cognitive functions at T1 and T2. 
The determination of the cognitive functions in their 
individual form, but sorted based on the criteria 
presented in 5.1.3 and 6.3, represent the most 
important part of this experimental work. Subject to 
the same methods for identification of probabilities 
they are found with, from one measurement step 
(T1) to another (2), in the selection structure of the 
cognitive typologies (48), the values of the cognitive 
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functions presented in the Tables 13, 14, 15 and 16 
also correlate, confirming the working assumption. 
Very high values have been obtained: 0.980 for Ia-F1 
(and the symmetric pair Ib-F2) și  0.948 for Ra-F7 (and 
Rb-F8) atT1, and 0.920 for Ia-F1 (and the symmetric 
pair Ib-F2) and 0.948 for Ra-F7 (and Rb-F8) at T2. 
Values that reflect a very good moderate correlation 
were obtained on the pairs: Oa-F3 (Ob-F4), 0.689 at 
T1 and 0.629 at T2, and 0.675 for Da-F5 (Db-F6) and 
0,777 for Da-F5 (Db-F6) at T2, an explanation for these 
slightly low values from the first being the specific of 
the way of integrating the dependant values and the 
biosignals. The MindSet head piece from NeuroSky 
shows, for EEG signals, an overlap of a number of 
simple signals with amplitude usually varying from 
about 1V at 100 V for a normal adult and about 10 - 
20 mV, if measured with subdural electrodes, such 
as the FFT electrodes. The phasic neurostimulator 
measures response electrical signals of which values 
can be followed between 18 and 435 mV, depending 
on the internal structure of the stimulation 
equipment. In this latter case, the signal integration 
is global, the signal being expressed in the response 
in the SPR potentials obtained by phasic stimulation 
and projectively deducted in values of the inferential 
functions. 
 
6.6  Shares correspondence analysis  
A very precise form of identification of the 
readability of a cognitive typology in mixed EEG-EDA 
determinations was achieved with the method 
described in 5.1.3.  
 
Table 17 shows the percentage result of the shares 
of EDA and EEG cognitive typologies found in T1 and 
T2, thus, in the same category of biosignals we 
determined a share of 92.25% for EEG and 92% for 
EDA and for mixed category, 91.75% at T1 and 91.5 
at T2. Table 18 also shows the correspondence of 
the shares of the behavioural functions at T1 and T2, 
where the values corresponding to the function I, 
deducted from Ia and Ib (F1 and F2) are 99% at T1 
and 96% at T2, the values corresponding to the 
function O, deducted from Oa and Ob (F3 and F4) 
are 84% at T1 and 81% at T2. The function D 
deducted from Da and Db (F5 and F6) shows 86% at 
T1 and 91% at T2 and the R function deducted from 
Ra and Rb (F7 and F8) shows the same value of 98% 
at T1 and T2.  
The correspondences of the shares of cognitive 
functions presented in Table 19 are also reflected by 
high values: 91.59% at T1, for very high and very low 
frequency bands, 92% at T1 for high and low 
frequencies, and 88.59% at T1 for very high and very 
low frequency bands, 94.59% at T1 for high and low 
frequencies, values that also confirm the working 
assumption.   
 
 

6.7 Experimental results 
 

Table 8. The correlation of the total sums of the 
probabilities of the cognitive functions at T1 and T2 

 

 
 
 

Table 9. The correlation of the sums of the 
probabilities of the cognitive functions VHI-VLO at T1  

 

 
 
 

Table 10. The correlation of the sums of the 
probabilities of the cognitive functions VHI-VLO at T2 

 

  
 

Table 11. The correlation of the sums of the 
probabilities of the cognitive functions HI-LO at T1 
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Table 12. The correlation of the sums of the 
probabilities of the cognitive functions HI-LO at T2 

 

  
 
 
 

Table 13. The correlation of the probabilities of the 
tonic cognitive functions at T1 

 

  
 
 

Table 14. The correlation of the probabilities of the 
tonic cognitive functions at T2 

 

 
 
 
 
 
 
 
 
 

Table 15. The correlation of the probabilities of the 
atonic cognitive functions at T1 

 

 
 
 
 

 Table 16. The correlation of the probabilities of the 
atonic cognitive functions at T2 

 

 
Notes: 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

 
 
 

Table 17. The correspondence of the shares of 
cognitive typologies at T1 and T2. 
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Table 18. The correspondence of the shares of 
behavioural typologies at T1 and T2. 

 

  
 
 

Table 19. The correspondence of the shares of 
cognitive typologies at T1 and T2. 

 

 
 
6.8 Conclusions 
The comparative experiment described in this work 
confirms the working assumption, i.e. there is a 
significant correlation between the values of the 
cognitive functions determined from the average of 
the spectral power densities of the EEG biosignals 
taken from the scalp level and the cognitive 
functions corresponding to the basal (SPL) and 
response (SPR) electrodermal potential measured at 
the same time, at the palms of the same individual, 
through the phasic neurostimulation method, and 
the design used reflects simultaneous and joint 

action of the targeted functions in the process of 
determining a psychological profile through the two 
types of biosignals. There are also provided the 
assumptions based on which a future study may be 
conducted on the correspondences between the 
palm areas and the locations of the EEG sensors in 
the "10-20 American System". 
The study also reveals that there is a functional 
difference between the EEG signals, which we 
consider predominantly signals of interest in 
functional explorations (neurophysiology), them 
being connected to subsystems having a strictly 
specialised brain activity, and the EDA signals - 
stimulated, which are signals of general interest in 
psychology and psychopathology, them being 
capable of correlation with the subsystems with 
integrated mental activity.  
This research brings highly valuable experimental 
arguments in connection with the possibility for the 
psychometric system MindMiTM used here for the 
determinations of electrodermal response to 
evaluate some psychophysiological aspects, at least 
to the same extent as the systems from the class of 
equipment based on electroencephalogram-type 
signals, significantly maintaining, through the 
manner of integrating the brain signals, projectively 
determined, on time units much wider than the 
potentials evoked in the EEG, the specificity to be 
useful particularly in psychological assessments. This 
nevertheless does not limit its possibilities of use in 
clinical assessments, where it can bring additional 
definition in establishing a diagnosis.  
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